Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 30, 2026
-
Free, publicly-accessible full text available March 30, 2026
-
Among the variety of applications (apps) being deployed on serverless platforms, apps such as Machine Learning (ML) inference serving can achieve better performance from leveraging accelerators like GPUs. Yet, major serverless providers, despite having GPU-equipped servers, do not offer GPU support for their serverless functions. Given that serverless functions are deployed on various generations of CPUs already, extending this to various (typically more expensive) GPU generations can offer providers a greater range of hardware to serve incoming requests according to the functions and request traffic. Here, providers are faced with the challenge of selecting hardware to reach a well-proportioned trade-off point between cost and performance. While recent works have attempted to address this, they often fail to do so as they overlook optimization opportunities arising from intelligently leveraging existing GPU sharing mechanisms. To address this point, we devise a heterogeneous serverless framework, PALDIA, which uses a prudent Hardware selection policy to acquire capable, costeffective hardware and perform intelligent request scheduling on it to yield high performance and cost savings. Specifically, our scheduling algorithm employs hybrid spatio-temporal GPU sharing that intelligently trades off job queueing delays and interference to allow the chosen cost-effective hardware to also be highly performant. We extensively evaluate PALDIA using 16 ML inference workloads with real-world traces on a 6 node heterogeneous cluster. Our results show that PALDIA significantly outperforms state-of-the-art works in terms of Service Level Objective (SLO) compliance (up to 13.3% more) and tail latency (up to ∼50% less), with cost savings up to 86%.more » « less
-
Edge servers have recently become very popular for performing localized analytics, especially on video, as they reduce data traffic and protect privacy. However, due to their resource constraints, these servers often employ compressed models, which are typically prone to data drift. Consequently, for edge servers to provide cloud-comparable quality, they must also perform continuous learning to mitigate this drift. However, at expected deployment scales, performing continuous training on every edge server is not sustainable due to their aggregate power demands on grid supply and associated sustainability footprints. To address these challenges, we propose Us.as,´ an approach combining algorithmic adjustments, hardware-software co-design, and morphable acceleration hardware to enable the training of workloads on these edge servers to be powered by renewable, but intermittent, solar power that can sustainably scale alongside data sources. Our evaluation of Us.as on a real-world´ traffic dataset indicates that our continuous learning approach simultaneously improves both accuracy and efficiency: Us.as´ offers a 4.96% greater mean accuracy than prior approaches while our morphable accelerator that adapts to solar variance can save up to {234.95kWH, 2.63MWH}/year/edge-server compared to a {DNN accelerator, data center scale GPU}, respectively.more » « less
-
This work focuses on forecasting future license usage for high-performance computing environments and using such predictions to improve the effectiveness of job scheduling. Specifically, we propose a model that carries out both short-term and long-term license usage forecasting and a method of using forecasts to improve job scheduling. Our long-term forecasting model achieves a Mean Absolute Percentage Error (MAPE) as low as 0.26 for a 12-month forecast of daily peak license usage. Our job scheduling experimental results also indicate that wasted work from jobs with insufficient licenses can be reduced by up to 92% without increasing the average license-using job completion times, during periods of high license usage, with our proposed license-aware scheduler.more » « less
An official website of the United States government
