skip to main content


Search for: All records

Creators/Authors contains: "Kandemir, Mahmut"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Deep Learning Recommendation Models (DLRMs) are very popular in personalized recommendation systems and are a major contributor to the data-center AI cycles. Due to the high computational and memory bandwidth needs of DLRMs, specifically the embedding stage in DLRM inferences, both CPUs and GPUs are used for hosting such workloads. This is primarily because of the heavy irregular memory accesses in the embedding stage of computation that leads to significant stalls in the CPU pipeline. As the model and parameter sizes keep increasing with newer recommendation models, the computational dominance of the embedding stage also grows, thereby, bringing into question the suitability of CPUs for inference. In this paper, we first quantify the cause of irregular accesses and their impact on caches and observe that off-chip memory access is the main contributor to high latency. Therefore, we exploit two well-known techniques: (1) Software prefetching, to hide the memory access latency suffered by the demand loads and (2) Overlapping computation and memory accesses, to reduce CPU stalls via hyperthreading to minimize the overall execution time. We evaluate our work on a single-core and 24-core configuration with the latest recommendation models and recently released production traces. Our integrated techniques speed up the inference by up to 1.59x, and on average by 1.4x. 
    more » « less
  3. Online recommender systems have proven to have ubiquitous applications in various domains. To provide accurate recommendations in real time it is imperative to constantly train and deploy models with the latest data samples. This retraining involves adjusting the model weights by incorporating newly-arrived streaming data into the model to bridge the accuracy gap. To provision resources for the retraining, typically the compute is hosted on VMs, however, due to the dynamic nature of the data arrival patterns, stateless functions would be an ideal alternative over VMs, as they can instantaneously scale on demand. However, it is non-trivial to statically configure the stateless functions because the model retraining exhibits varying resource needs during different phases of retraining. Therefore, it is crucial to dynamically configure the functions to meet the resource requirements, while bridging the accuracy gap. In this paper, we propose Sandpiper, an adaptive framework that leverages stateless functions to deliver accurate predictions at low cost for online recommender systems. The three main ideas in Sandpiper are (i) we design a data-drift monitor that automatically triggers model retraining at required time intervals to bridge the accuracy gap due to incoming data drifts; (ii) we develop an online configuration model that selects the appropriate function configurations while maintaining the model serving accuracy within the latency and cost budget; and (iii) we propose a dynamic synchronization policy for stateless functions to speed up the distributed model retraining leading to cloud cost minimization. A prototype implementation on AWS shows that Sandpiper maintains the average accuracy above 90%, while 3.8× less expensive than the traditional VM-based schemes. 
    more » « less
  4. Recently, point cloud (PC) has gained popularity in modeling various 3D objects (including both synthetic and real-life) and has been extensively utilized in a wide range of applications such as AR/VR, 3D reconstruction, and autonomous driving. For such applications, it is critical to analyze/understand the surrounding scenes properly. To achieve this, deep learning based methods (e.g., convolutional neural networks (CNNs)) have been widely employed for higher accuracy. Unlike the deep learning on conventional 2D images/videos, where the feature computation (matrix multiplication) is the major bottleneck, in point cloud-based CNNs, the sample and neighbor search stages are the primary bottlenecks, and collectively contribute to 54% (up to 80%) of the overall execution latency on a typical edge device. While prior efforts have attempted to solve this issue by designing custom ASICs or pipelining the neighbor search with other stages, to our knowledge, none of them has tried to “structurize” the unstructured PC data for improving computational efficiency. In this paper, we first explore the opportunities of structurizing PC data using Morton code (which is originally designed to map data from a high dimensional space to one dimension, while preserving spatial locality) and observe that there is a huge scope to “skip” the sample and neighbor search computation by operating on the “structurized” PC data. Based on this, we propose two approximation techniques for the sampling and neighbor search stages. We implemented our proposals on an NVIDIA Jetson AGX Xavier edge GPU board. The evaluation results collected on six different workloads show that our design can accelerate the sample and neighbor search stages by 3.68× (up to 5.21×) with minimal impact on inference accuracy. This acceleration in turn results in 1.55× speedup in the end-to-end execution latency and saves 33% of energy expenditure. 
    more » « less
  5. The growing popularity of the serverless platform has seen an increase in the number and variety of applications (apps) being deployed on it. The majority of these apps process user-provided input to produce the desired results. Existing work in the area of input-sensitive profiling has empirically shown that many such apps have input size-dependent execution times which can be determined through modelling techniques. Nevertheless, existing serverless resource management frameworks are agnostic to the input size-sensitive nature of these apps. We demonstrate in this paper that this can potentially lead to container over-provisioning and/or end-to-end Service Level Objective (SLO) violations. To address this, we propose Cypress, an input size-sensitive resource management framework, that minimizes the containers provisioned for apps, while ensuring a high degree of SLO compliance. We perform an extensive evaluation of Cypress on top of a Kubernetes-managed cluster using 5 apps from the AWS Serverless Application Repository and/or Open-FaaS Function Store with real-world traces and varied input size distributions. Our experimental results show that Cypress spawns up to 66% fewer containers, thereby, improving container utilization and saving cluster-wide energy by up to 2.95X and 23%, respectively, versus state-of-the-art frameworks, while remaining highly SLO-compliant (up to 99.99%). 
    more » « less
  6. Deep neural networks (DNNs) are increasingly popular owing to their ability to solve complex problems such as image recognition, autonomous driving, and natural language processing. Their growing complexity coupled with the use of larger volumes of training data (to achieve acceptable accuracy) has warranted the use of GPUs and other accelerators. Such accelerators are typically expensive, with users having to pay a high upfront cost to acquire them. For infrequent use, users can, instead, leverage the public cloud to mitigate the high acquisition cost. However, with the wide diversity of hardware instances (particularly GPU instances) available in public cloud, it becomes challenging for a user to make an appropriate choice from a cost/performance standpoint. In this work, we try to address this problem by (i) introducing a comprehensive distributed deep learning (DDL) profiler Stash, which determines the various execution stalls that DDL suffers from, and (ii) using Stash to extensively characterize various public cloud GPU instances by running popular DNN models on them. Specifically, it estimates two types of communication stalls, namely, interconnect and network stalls, that play a dominant role in DDL execution time. Stash is implemented on top of prior work, DS-analyzer, that computes only the CPU and disk stalls. Using our detailed stall characterization, we list the advantages and shortcomings of public cloud GPU instances for users to help them make an informed decision(s). Our characterization results indicate that the more expensive GPU instances may not be the most performant for all DNN models and that AWS can sometimes sub-optimally allocate hardware interconnect resources. Specifically, the intra-machine interconnect can introduce communication overheads of up to 90% of DNN training time and the network-connected instances can suffer from up to 5× slowdown compared to training on a single instance. Furthermore, (iii) we also model the impact of DNN macroscopic features such as the number of layers and the number of gradients on communication stalls, and finally, (iv) we briefly discuss a cost comparison with existing work. 
    more » « less
  7. As Point Clouds (PCs) gain popularity in processing millions of data points for 3D rendering in many applications, efficient data compression becomes a critical issue. This is because compression is the primary bottleneck in minimizing the latency and energy consumption of existing PC pipelines. Data compression becomes even more critical as PC processing is pushed to edge devices with limited compute and power budgets. In this paper, we propose and evaluate two complementary schemes, intra-frame compression and inter-frame compression, to speed up the PC compression, without losing much quality or compression efficiency. Unlike existing techniques that use sequential algorithms, our first design, intra-frame compression, exploits parallelism for boosting the performance of both geometry and attribute compression. The proposed parallelism brings around 43.7× performance improvement and 96.6% energy savings at a cost of 1.01× larger compressed data size. To further improve the compression efficiency, our second scheme, inter-frame compression, considers the temporal similarity among the video frames and reuses the attribute data from the previous frame for the current frame. We implement our designs on an NVIDIA Jetson AGX Xavier edge GPU board. Experimental results with six videos show that the combined compression schemes provide 34.0× speedup compared to a state-of-the-art scheme, with minimal impact on quality and compression ratio. 
    more » « less